Morpho-syntactic Lexical Generalization for CCG Semantic Parsing
نویسندگان
چکیده
In this paper, we demonstrate that significant performance gains can be achieved in CCG semantic parsing by introducing a linguistically motivated grammar induction scheme. We present a new morpho-syntactic factored lexicon that models systematic variations in morphology, syntax, and semantics across word classes. The grammar uses domain-independent facts about the English language to restrict the number of incorrect parses that must be considered, thereby enabling effective learning from less data. Experiments in benchmark domains match previous models with one quarter of the data and provide new state-of-the-art results with all available data, including up to 45% relative test-error reduction.
منابع مشابه
Lexical Generalization in CCG Grammar Induction for Semantic Parsing
We consider the problem of learning factored probabilistic CCG grammars for semantic parsing from data containing sentences paired with logical-form meaning representations. Traditional CCG lexicons list lexical items that pair words and phrases with syntactic and semantic content. Such lexicons can be inefficient when words appear repeatedly with closely related lexical content. In this paper,...
متن کاملHypertagging: Supertagging for Surface Realization with CCG
In lexicalized grammatical formalisms, it is possible to separate lexical category assignment from the combinatory processes that make use of such categories, such as parsing and realization. We adapt techniques from supertagging — a relatively recent technique that performs complex lexical tagging before full parsing (Bangalore and Joshi, 1999; Clark, 2002) — for chart realization in OpenCCG, ...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملJoint A∗ CCG Parsing and Semantic Role Labeling
Joint models of syntactic and semantic parsing have the potential to improve performance on both tasks—but to date, the best results have been achieved with pipelines. We introduce a joint model using CCG, which is motivated by the close link between CCG syntax and semantics. Semantic roles are recovered by labelling the deep dependency structures produced by the grammar. Furthermore, because C...
متن کاملJoint A* CCG Parsing and Semantic Role Labelling
Joint models of syntactic and semantic parsing have the potential to improve performance on both tasks—but to date, the best results have been achieved with pipelines. We introduce a joint model using CCG, which is motivated by the close link between CCG syntax and semantics. Semantic roles are recovered by labelling the deep dependency structures produced by the grammar. Furthermore, because C...
متن کامل